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It is shown that the solution of the Fredholm Integral equation
x
u(tvr)=g(t)+gk(t,y)u(y,x)dy. 0<t<e
0

A

X (0.1)

canbe expressed in terms of the two functions @ = @ (¢, z) and ¥ = ¥ (y, z)
each of which depends only on twoarguments. There is obtained a complete
Cauchy system for these two functions and fora third auxiliary functionZ = Z (z).

More than twenty years ago, Krein [ 1] derived a partial differential equ-
ation for the Fredholm resolvent, Severalyearslater this equation was obtained
independently by Bellman [ 2 ] onthebasisof a variational principle.

The purpose of the present paper is to deduce a complete system of differential
equations , one of which is the Krein — Bellman equation, and thentoobtain a
representation of the solution of the Fredholm integral equation by using functions
® = @'(t, zr) and¥ = ¥ (y, z) in place of resolvents containing three arguments.
Reduction of Fredholm integral equations to a Cauchy system is described in detail
inthe book [3], The ideas of this paper are an extension of the Sobolov's [4 Jideas,

1]

1, Introducing the resolvent X, the solution of (0, 1) can be represented in the
form

x
L1
wt ) =g O+ Ky 2 gWdy, 0<i<s -3
0
The resolvent K satisfies the integral equation
x
K@y o) =kwy+ KoL)k yd, 0<wy<e<x  (1L2)
0

Let us introduce the auxiliary function ¢ as a solution of the integral equation

x

(D(t,:c)=k(t,x)+Sk(t,y)(D(y,x)dy, 0<t<z< X (1.3)
0

Comparing the integral equation (1, 3) with the integral equation for ux obtained
by differentiating (0, 1) with respect to z and using their linearity , we have

Ux (tv :L')=(D(t, z)u(z, z) (1.4)

Let us define a new function ¥ as
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w(y,a‘)=K(z,y,z), 0<ll<x<x (1.5)
Then (1, 1) can be written as follows for =z !
U@ =¢@+ \¥@5ewdy (1.6)
0
U () = u(z, 2) (1.7)

Integrating both sides of (1. 4) with respect to = and using (1.7), we obtain

x

u(t,x)=U(t)+§®(t,w)U(w)dw (1.8)

Substituting (1,6 ) into (1, 8), the solution of the Fredholm equation can be written

as follows [5]:
t

uhn) =g+ (¥ @08+ (1.9)

0
x w

yo o) [6@+§ ¥ @ v) g w)dy| aw
0

This formula yields the solution u (¢, z) expressed interms of the auxiliary func-
tions ® and ¥ which depend on two arguments(the resolvent X depends on three
arguments),

It is seen from (1,5) and (1,2) that ¥ satisfies the integral equation

x
¥ (y, ) =k (, y)+S‘F(y’,z)k(y’,y)dy', 0<y<z<X (1.10)
0

2. If the substitution
gt =k(t,y, 0tz 2.1)

is made in (1,9), then u(t,z)=KI(ty 2 .2

Substituting the relation (2, 1) into (1, 6) and comparing the equation obtained with
(1.10),we have U (1) = ¥ (y, t). Using(2,2) and (1.8), we obtain

K(t,y,z)=‘I’(y,t)+S(D(t,w)‘I"(y,w)dw (2.3)
t

Recalling the integral equations (1,3) and (1,10) for @ and ¥, we see that (1]
and ¥ aredefinedfor z<t and y<t, hence,(2.3)issuitable forall valuesof ¢,
y. Differentiating (2, 3) with respect to z, we obtain partial differential equations

for K depending on the functions @ and ¥
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Kx (t: Y, x) == (D (ta x)‘y (y9 $)

K (t! Y, y) = (ta y)v 9‘> t {2.4)
K@ yty="(yt), t>y
Equations (1.2) and (1.3) yield
Q=K (@, z,2, 0t (2.5)
Equations {2,4) and (1,3 ) yields
Kx(t,y,x)=K(t,x,z)K(z,y,x),Ogt, ys (2.6)

i,e., we arrive at the Krein — Bellman equation,

3. Let us derive differential equations for the functions @, ¥, X and 2,
We start with the function @ (4, 7). we differentiate (1,3 ) with respect to =z,
which yields x
O (hr)y=A(,z)+ S k(ty) @, (y, z)dy (3.1)

At 2) = ke (4 ) ok k (&, 2)O (2, 2) (3.2)

Let us note that (3, 1) for @, agrees with (0.1) for (1, z) if we substitute

g =42 (3.3
in (0. 1).
The solution for u isgivenby (1.8) and (1. 6), hence the solution for @ can also be
expressed by the relations (1, 8) and (1. 6 ) upon compliance with condition (3,3). Simi -
larly to (1, 8) , we obtain

x
(I)x(t,x)——-'-R(t,x)-}-S(D(t,w)R(w,x)dw, 0<t<r <X
t

(3,4)

R(t,z)= A=)+ (¥ w2 4@ d
1]

Let us derive a differential equation for the function V¥ (y, z). To do this, we
differentiate both sides of (1. 10) with respect to =

x
¥, (¥ x)= By, z) »{-S‘I’x(w»,x)k(w, z) dw (3.5)
¢
B (y, %) = kx (z, y) + ¥ (z, 2)k (, ¥) (3.6)
We now examine the auxiliary integral equation
x
v =h@)+ vk, I<y<e<x =7

[
Differentiating (3, 7) withrespectto # and comparing the result with (1, 10), we
obtain
o2 (1, 2) = ¥ (, =)o (z, 2) (3.8)

Integrating (3, 8) with respect to =, we obtain
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2 2)=2(49) + (¥4 w) o 0, w) dw (3.9)
v

Let us introduce the resolvent of the kemel L (w, ¥, z), then the solution of the
equation is expressed as follows:

x
v 2) =k + (@ L@y, 0<w<s (3.10)
0
The solution of (3, 9) will be
vy 2) =V +{¥ w0V w@ad (3.11)
v
V(x)sv(w,x)=h(:c)+Sh(w)1;(w,z,z)dw (3.12)

[

We determine the function L (w, z, z). To do this, we equate the right sides of
(3,7) and (8, 10) and obtain
X x
Sv(w,z)k(w,y)dw.—_Sh(w)L(w,y,z)dw (3.13)
0 0

In conformity with (3, 10), we write an expression for v (w, ), where we replace
the variable of integration by {. Substituting this expression for v (w, z) under the
integral sign in (3. 13), we obtain

x X x x
Sh(w)k(w, y) dw -}-Sk (, y) dw Sh(g)L(g, w, ) d, =Sh(w)L(w, v, z)dw
o 0 0 0

(3.14)

Let us replace w by [ and { by w in the second term in the left side of (3, 14)
and let us collect terms in 4 (w). Taking into account that % (w) is an arbitrary
function , we hence obtain the integral equation

L(w,y,x)=k(wy)+

x (3.15)
SL(w, Loe) k(L y)dL
1]

Taking into account the Fredholm integral equation (3.7) and its solution (3, 10),
we write the solution for the Fredholm integral equation (8. 15) in the form

x
L(w,y,2) =k(w,9)+ k0, O L v, 2)de (3.16)
0

Substituting y= z into (3,16),and t = w» into(l 3) and equating the results,
we obtain
Lwz2)=0 w2, 0Sw<z<X (3.17)
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Using (3. 17), we write the solution for v (y, z) determined by (3, 11)and (3. 12)
in the form

U(y’z)“‘V(y)-i-S‘i’(y,w)V(w)a‘w (3, 18)
v

x
V(¢)=h(z)+gh(w)®(ww)dw (3.19)
| )

Comparing (3.5) and (3,7), we remark that ¥, satisfies the integral equation
(3.7) if we set _
h(y) = B (y, 2) (3.20)

We hence conclude that under the condition (3, 20) the solution for ¥, agrees
with the solution for » (y, z) determined by (3.18) and (8. 19). It is hence possible
to write the solution for ¥, in the form

¥, (0. 2)=P .9+ (¥ @ 0) P@,2)dv, 0<y<= (3.21)
Y

P(y,2) =By, )+ Bw.2) ®(w 2)dv
0

Let us introduce the new function

Z@ =02, 0<z<X (3.22)
Differentiating (3. 22} with respect to ® we obtain
az (z)
1z .-—_(I)l(x,a:)—}—(]).z(x,x) (3.23)

Oy {z, z) = [ﬂé%ﬁ]y,:x . Oy (z,7) = [ @ g: x) ]v-‘

Differentiating (1.3) for @ with respect to ¢ and setting ¢ =z , we obtain

X
ok (2, y)
@, (z, ) =k, (z, z) + S ky{z, )DL, 2) d, kix,2)= [_——%t—_—]!=y=x (3.24)
i
The function @, (z, x) agrees with @, (t, 7). If we substitute ¢ ==z, we
obtain in conformity with the first equation in (3,4)

®, (z, 2) = R (z, 7) (3.25)

Substituting (3. 24) and (3, 25) into (8, 23 ), we obtain an integro~ differential equa -
tion for Z (2)

dZ () § (3.26)
1)

dx = ky (%, %) +

ky (@ §) @ (G, #)dE + R (=, 2)
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Here , according to the second relationship in (3.4) and (3. 2)

R(z,z)=A(z, w)-}-S‘F(;,:x)A(g,x}dg (3.27)
0

A@,x)==ky(z,2)+ k(z, 2) D(z,2), ky(z, )= [WQE%-'—Q-’—)—]

4, Let us determine the initial conditions for the functions @, ¥ and 2,K.
We obtain the initial conditions for @ from (3, 22) by substituting z =1t

@, t)=2() (4.1)

In order to obtain the initial conditions for X, let us recall (2.5) and (1.5). Sub-
stituting ¢ = y = 2 therein, and using (4. 1), we obtain

D, ) =¥ {(z,2)= Kz, 2,250=2(2) {4.2)
it is seen from (4, 2) that the initial condition for ¥ is

Y p=2(@ {(4.3)
The initial condition for Z (z) isobtainedby substituting = = 0 in(1, 2)and (4.2)
Z(0) = k (0, 0) (4.4)

The initial conditions for the resolvent X are given by the last two relationships
in{2,4), S.L. Sobolev [6] examined this question,

5, Thus, asystem of integro-differential equations (3. 4),(3,21),(3.26)and (2,4)
{the first equation ) with initial conditions (4. 1), (4,3), (4. 4) and (2, 4) (thelast two re-
lationships ) hasbeen obtained, Theintegralscanbe approximated by a finitesum and a
computational technique canbeused . Afterthe functions @ and ¥ havebeendetermined
from (3.4) and (3,21), the function  can be determined by (1.8) and (1.6).

The differential equationsfor @, ¥ and Z areacompletesystemwhichcan be
used for the numerical determination of these three functions, If the Krein — Bellman equ-~
ation (2, 6) and the initial conditions from (2.4 ) are appended , then a complete system
of equations to determine Z, ®, ¥ and K is obtained.
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